Search-Based Methods to Bound Diagnostic Probabilities in Very Large Belief Nets
نویسنده
چکیده
Since exact probabilistic inference is intractable in general for large multiply connected belief nets, approximate methods are required. A promising approach is to use heuristic search among hypotheses (instantiations of the network) to find the most probable ones, as in the TopN algorithm. Search is based on the relative probabilities of hypotheses which are efficient to compute. Given upper and lower bounds on the relative probability of partial hypotheses, it is possible to obtain bounds on the absolute probabilities of hypotheses. Best-first search aimed at reducing the maximum error progressively narrows the bounds as more hypotheses are examined. Here, qualitative probabilistic analysis is employed to obtain bounds on the reiative probabiiity of partial hypotheses for the BN20 class of networks networks and a generalization replacing the noisy OR assumption by negative synergy. The approach is illustrated by application to a very large belief network, QMR-BN, which is a reformulation of the Internist-1 system for diagnosis in internal medicine.
منابع مشابه
Representing Diagnostic Knowledge for Probabilistic Horn Abduction
This paper presents a simple logical framework for abduction, with probabilities associated with hypotheses. The language is an extension to pure Prolog, and it has straight-forward implementations using branch and bound search with either logic-programming technology or ATMS technology. The main focus of this paper is arguing for a form of representational adequacy of this very simple system f...
متن کاملHeuristic approach to solve hybrid flow shop scheduling problem with unrelated parallel machines
In hybrid flow shop scheduling problem (HFS) with unrelated parallel machines, a set of n jobs are processed on k machines. A mixed integer linear programming (MILP) model for the HFS scheduling problems with unrelated parallel machines has been proposed to minimize the maximum completion time (makespan). Since the problem is shown to be NP-complete, it is necessary to use heuristic methods to ...
متن کاملA Self-organized Multi Agent Decision Making System Based on Fuzzy Probabilities: The Case of Aphasia Diagnosis
Aphasia diagnosis is a challenging medical diagnostic task due to the linguistic uncertainty and vagueness, large number of measurements with imprecision, inconsistencies in the definition of Aphasic syndromes, natural diversity and subjectivity in test objects as well as in options of experts who diagnose the disease. In this paper we present a new self-organized multi agent system that diagno...
متن کاملA heuristic approach for multi-stage sequence-dependent group scheduling problems
We present several heuristic algorithms based on tabu search for solving the multi-stage sequence-dependent group scheduling (SDGS) problem by considering minimization of makespan as the criterion. As the problem is recognized to be strongly NP-hard, several meta (tabu) search-based solution algorithms are developed to efficiently solve industry-size problem instances. Also, two different initi...
متن کاملDeterministic approximation of marginal probabilities in Bayes nets
Computation of marginal probabilities in Bayes nets is central to numerous reasoning and automatic decision making systems. This paper presents a deterministic approximation scheme for this hard problem that supplies provably correct bounds by aggregating probability mass in independence-based (IB) assignments. The scheme presented refines recent work in belief updating for Bayes networks: atte...
متن کامل